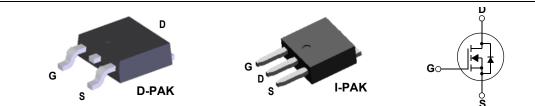


# FDD6N50/ FDU6N50 N-Channel UniFET<sup>TM</sup> MOSFET 500 V, 6 A, 900 mΩ

### Features

- $R_{DS(on)}$  = 900 m $\Omega$  (Max.) @ V<sub>GS</sub> = 10 V, I<sub>D</sub> = 3 A
- Low Gate Charge (Typ.12.8 nC)
- Low C<sub>rss</sub> (Typ. 9 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability


### Applications

- LCD/LED/PDP TV
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

## Description

UniFET<sup>TM</sup> MOSFET is Fairchild Semiconductor<sup>®</sup>, shigh voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

April 2013



## **Absolute Maximum Ratings**

| Symbol                           | Parameter                                                                    |                                                                               | FDD6N50/ FDU6N50 | Unit       |           |
|----------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|------------|-----------|
| V <sub>DSS</sub>                 | Drain-Source Voltage                                                         | ge                                                                            |                  | 500        | V         |
| I <sub>D</sub>                   | Drain Current                                                                | - Continuous ( $T_C = 25^{\circ}C$ )<br>- Continuous ( $T_C = 100^{\circ}C$ ) |                  | 6<br>3.8   | A<br>A    |
| I <sub>DM</sub>                  | Drain Current                                                                | - Pulsed                                                                      | (Note 1)         | 24         | А         |
| V <sub>GSS</sub>                 | Gate-Source voltage                                                          |                                                                               | ±30              | V          |           |
| E <sub>AS</sub>                  | Single Pulsed Avalanche Energy                                               |                                                                               | (Note 2)         | 270        | mJ        |
| I <sub>AR</sub>                  | Avalanche Current                                                            |                                                                               | (Note 1)         | 6          | А         |
| E <sub>AR</sub>                  | Repetitive Avalanche Energy                                                  |                                                                               | (Note 1)         | 8.9        | mJ        |
| dv/dt                            | Peak Diode Recovery dv/dt                                                    |                                                                               | (Note 3)         | 4.5        | V/ns      |
| P <sub>D</sub>                   | Power Dissipation                                                            | (T <sub>C</sub> = 25°C)<br>- Derate above 25°C                                |                  | 89<br>0.71 | W<br>W/°C |
| T <sub>J,</sub> T <sub>STG</sub> | Operating and Storage Temperature Range                                      |                                                                               | -55 to +150      | °C         |           |
| TL                               | Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds |                                                                               | е,               | 300        | °C        |

### **Thermal Characteristics**

| Symbol              | Parameter                                     | FDD6N50/ FDU6N50 | Unit  |  |
|---------------------|-----------------------------------------------|------------------|-------|--|
| $R_{	ext{	heta}JC}$ | Thermal Resistance, Junction-to-Case, Max.    | 1.4              | °C/W  |  |
| $R_{\thetaJA}$      | Thermal Resistance, Junction-to-Ambient, Max. | 83               | -0/10 |  |

| Ō                       |
|-------------------------|
| Ā                       |
| Ž                       |
| 5                       |
| N50                     |
| 1                       |
|                         |
|                         |
| č                       |
| J6N50                   |
| Ž                       |
| 5                       |
| ö                       |
| _                       |
| Ż                       |
| Å                       |
| $\stackrel{\sim}{\sim}$ |
| ธ                       |
| Ĩ.                      |
| Ξ                       |
| ē                       |
| <u> </u>                |
| N-Channel Un            |
|                         |
| <u> </u>                |
| Ē                       |
| щ                       |
|                         |
| 2                       |
| _                       |
| Ξ                       |
| ō                       |
| ×                       |
| ¥                       |
| Ĩ                       |
| Щ                       |
|                         |

### Package Marking and Ordering Information

| Device Marking | Device       | Package | Reel Size | Tape Width | Quantity |
|----------------|--------------|---------|-----------|------------|----------|
| FDD6N50        | FDD6N50TM    | D-PAK   | 380mm     | 16mm       | 2500     |
| FDD6N50S       | FDD6N50TM_WS | D-PAK   | 380mm     | 16mm       | 2500     |
| FDU6N50        | FDU6N50TU    | I-PAK   | -         | -          | 70       |

### Electrical Characteristics T<sub>C</sub> = 25°C unless otherwise noted

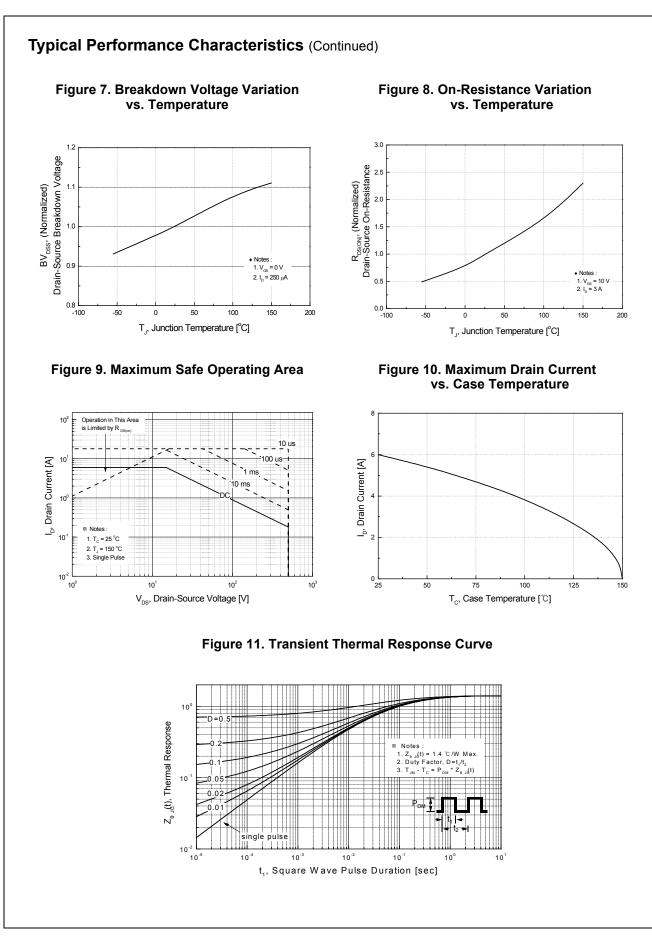
| Symbol                                                         | Parameter                                             | Conditions                                                            | Min. | Тур. | Max     | Unit     |
|----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|------|------|---------|----------|
| Off Charac                                                     | teristics                                             |                                                                       |      |      |         |          |
| $BV_{DSS}$ Drain-Source Breakdown Voltage $V_{GS} = 0V, I_D =$ |                                                       | V <sub>GS</sub> = 0V, I <sub>D</sub> = 250µA                          | 500  |      |         | V        |
| $\Delta BV_{DSS}$<br>/ $\Delta T_J$                            | Breakdown Voltage Temperature<br>Coefficient          | I <sub>D</sub> = 250μA, Referenced to 25°C                            |      | 0.5  |         | V/°C     |
| I <sub>DSS</sub>                                               | Zero Gate Voltage Drain Current                       | $V_{DS} = 500V, V_{GS} = 0V$<br>$V_{DS} = 400V, T_{C} = 125^{\circ}C$ |      |      | 1<br>10 | μΑ<br>μΑ |
| I <sub>GSSF</sub>                                              | Gate-Body Leakage Current, Forward                    | V <sub>GS</sub> = 30V, V <sub>DS</sub> = 0V                           |      |      | 100     | nA       |
| I <sub>GSSR</sub>                                              | Gate-Body Leakage Current, Reverse                    | V <sub>GS</sub> = -30V, V <sub>DS</sub> = 0V                          |      |      | -100    | nA       |
| On Charac                                                      | teristics                                             |                                                                       |      |      |         |          |
| V <sub>GS(th)</sub>                                            | Gate Threshold Voltage                                | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                    | 3.0  |      | 5.0     | V        |
| R <sub>DS(on)</sub>                                            | Static Drain-Source<br>On-Resistance                  | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3A                            |      | 0.76 | 0.9     | Ω        |
| 9 <sub>FS</sub>                                                | Forward Transconductance                              | V <sub>DS</sub> = 40V, I <sub>D</sub> = 3A                            |      | 2.5  |         | S        |
| Dynamic C                                                      | haracteristics                                        |                                                                       |      |      |         |          |
| C <sub>iss</sub>                                               | Input Capacitance                                     | $V_{DS}$ = 25V, $V_{GS}$ = 0V,                                        |      | 720  | 940     | pF       |
| C <sub>oss</sub>                                               | Output Capacitance                                    | f = 1.0MHz                                                            |      | 95   | 190     | pF       |
| C <sub>rss</sub>                                               | Reverse Transfer Capacitance                          |                                                                       |      | 9    | 13.5    | pF       |
| Switching                                                      | Characteristics                                       |                                                                       |      |      |         |          |
| t <sub>d(on)</sub>                                             | Turn-On Delay Time                                    | V <sub>DD</sub> = 250V, I <sub>D</sub> = 6A                           |      | 6    | 20      | ns       |
| t <sub>r</sub>                                                 | Turn-On Rise Time                                     | R <sub>G</sub> = 25Ω<br>(Note 4)                                      |      | 55   | 120     | ns       |
| t <sub>d(off)</sub>                                            | Turn-Off Delay Time                                   |                                                                       |      | 25   | 60      | ns       |
| t <sub>f</sub>                                                 | Turn-Off Fall Time                                    |                                                                       |      | 35   | 80      | ns       |
| Qg                                                             | Total Gate Charge                                     | V <sub>DS</sub> = 400V, I <sub>D</sub> = 6A                           |      | 12.8 | 16.6    | nC       |
| Q <sub>gs</sub>                                                | Gate-Source Charge                                    | V <sub>GS</sub> = 10V                                                 |      | 3.7  |         | nC       |
| Q <sub>gd</sub>                                                | Gate-Drain Charge                                     | (Note 4)                                                              |      | 5.8  |         | nC       |
| Drain-Sour                                                     | ce Diode Characteristics and Maximur                  | n Ratings                                                             |      |      |         |          |
| I <sub>S</sub>                                                 | Maximum Continuous Drain-Source Diode Forward Current |                                                                       |      |      | 6       | Α        |
| I <sub>SM</sub>                                                | Maximum Pulsed Drain-Source Diode Forward Current     |                                                                       |      |      | 24      | А        |
| V <sub>SD</sub>                                                | Drain-Source Diode Forward Voltage                    | V <sub>GS</sub> = 0V, I <sub>S</sub> = 6A                             |      |      | 1.4     | V        |
| t <sub>rr</sub>                                                | Reverse Recovery Time                                 | V <sub>GS</sub> = 0V, I <sub>S</sub> = 6A                             |      | 275  |         | ns       |
| Q <sub>rr</sub>                                                | Reverse Recovery Charge                               | dI <sub>F</sub> /dt =100A/μs                                          |      | 1.7  |         | μC       |

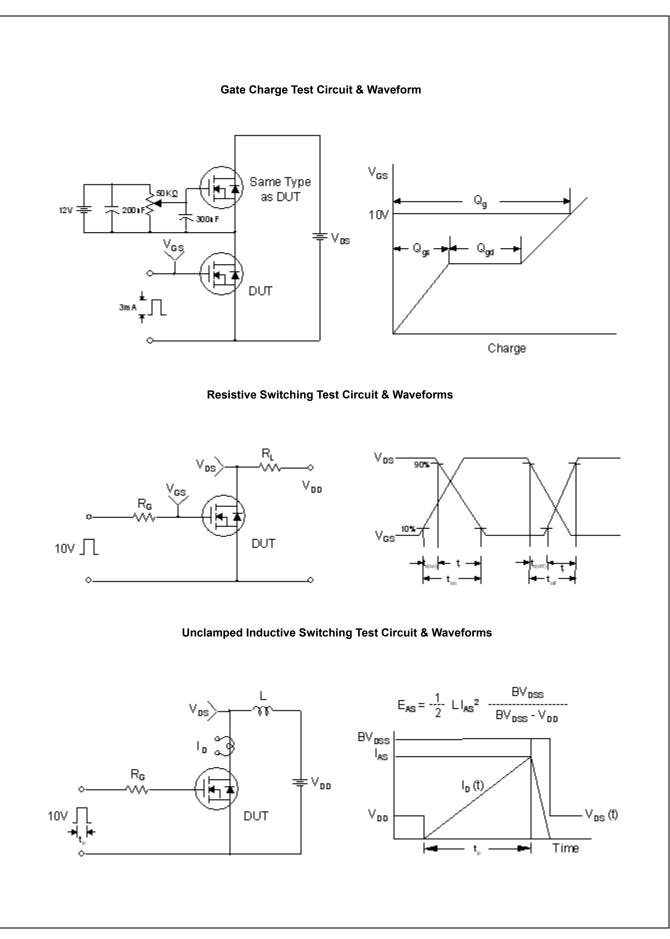
### NOTES:

1. Repetitive Rating: Pulse width limited by maximum junction temperature

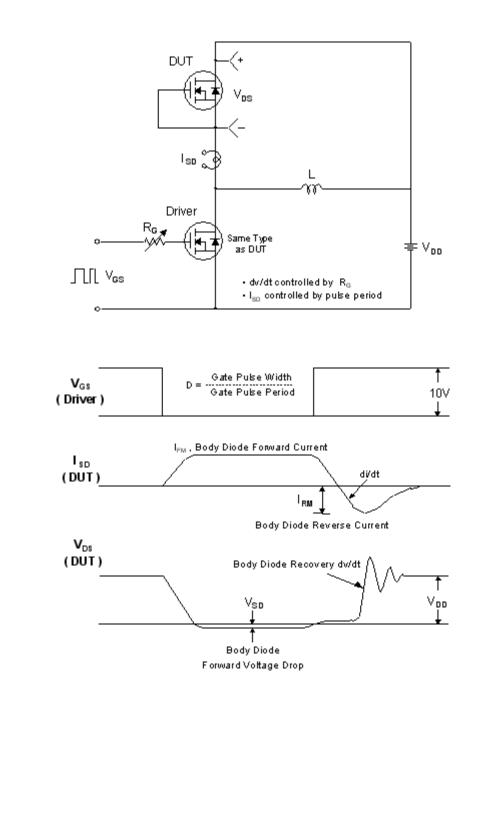
2. I\_{AS} = 6A, V\_{DD} = 50V, L=13.5mH, R\_G = 25 $\Omega$ , Starting T\_J = 25°C

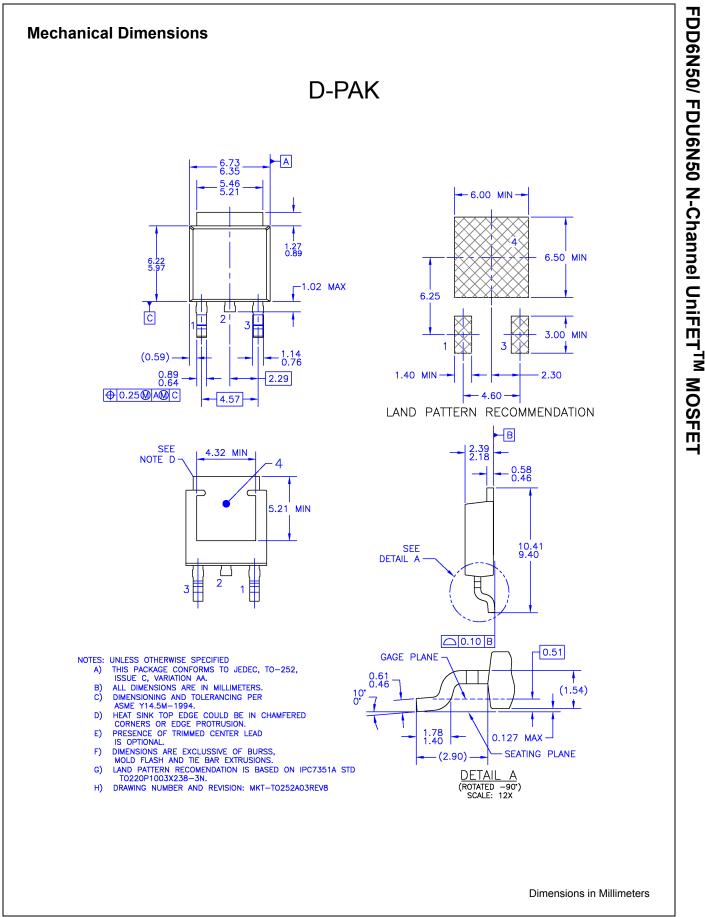
3. I\_{SD} \leq 6A, di/dt \leq 200A/\mu s, V\_{DD} \leq BV\_{DSS}, Starting T\_J = 25°C

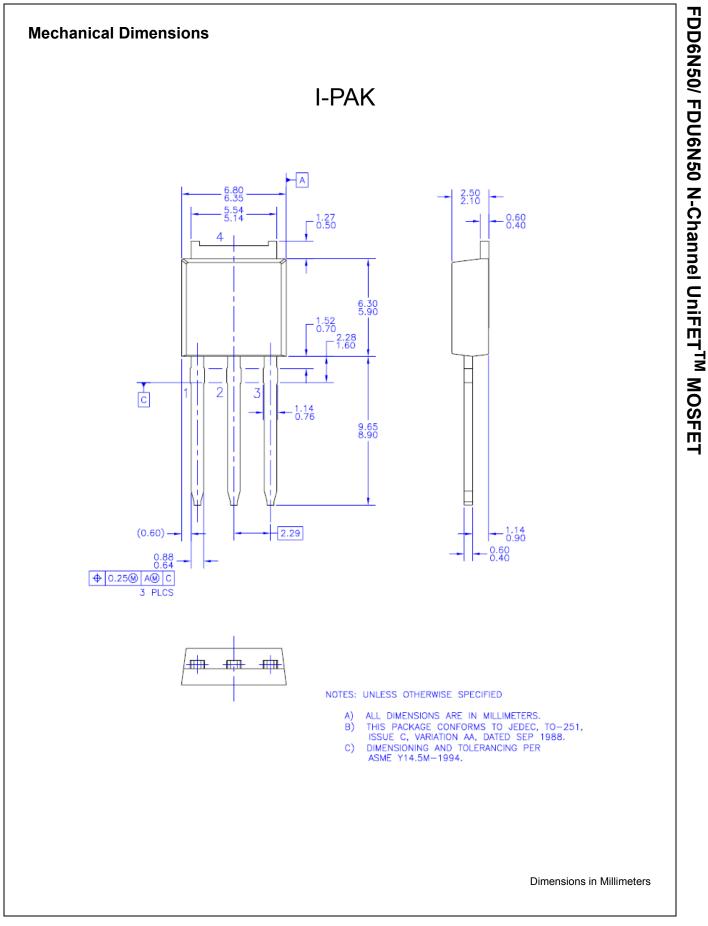

4. Essentially Independent of Operating Temperature Typical Characteristics




#### **Typical Performance Characteristics Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics** 20 V<sub>GS</sub> 10.0 V 8.0V 7.5 V 7.0 V 6.5 V 6.0 V Тор 10<sup>1</sup> 15 ₹ Drain Current [A] l<sub>o</sub> , Drain Current 150° 5.5 V 5 0 V Bottom 10 25 . -**55**℃ Notes ĥ 10 1. 250µ s Pulse Test ⋇ Note 1. V<sub>DS</sub> = 40V 2. T<sub>c</sub> = 25°C 2. 250µ s Pulse Test 0 10 20 30 40 50 0 10<sup>-2</sup> 2 4 6 8 10 V<sub>DS</sub>, Drain-Source Voltage [V] V<sub>GS</sub>, Gate-Source Voltage [V] Figure 4. Body Diode Forward Voltage Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Variation vs. Source Current and Temperature 2 [0 ], Drain-Source On-Resistance ≤ 10 2.0 Reverse Drain Current V<sub>GS</sub> = 10V 1.5 10 20\ 150°C \_\_\_\_\_ 0.5 \* Notes R<sub>bs(on)</sub> | 1. V<sub>GS</sub> = 0V 2. 250µ s Pulse ₩ Note : T<sub>j</sub> = 25°C Tes 10<sup>-1</sup> – 0.2 0.0 0 10 15 20 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 V<sub>sp</sub>, Source-Drain Voltage [V] I<sub>D</sub>, Drain Current [A] **Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics** 12 $C_{lss} = C_{gs} + C_{gd} (C_{ds} = \text{shorted})$ $C_{css} = C_{ds} + C_{gd}$ $C_{rss} = C_{gd}$ V<sub>DS</sub> = 100V V<sub>DS</sub> = 250V 10 V<sub>GS</sub>, Gate-Source Voltage [V] 1000 V<sub>DS</sub> = 400V 8 Capacitance [pF] 100 \* Notes : 1. V<sub>GS</sub> = 0 V 2. f = 1 MHz 2 10 0 10<sup>°</sup> 10 0 5 10 15 V<sub>DS</sub>, Drain-Source Voltage [V] Q<sub>G</sub>, Total Gate Charge [nC]


# ©2006 Fairchild Semiconductor Corporation FDD6N50/ FDU6N50 Rev. C0


3






Peak Diode Recovery dv/dt Test Circuit & Waveforms









SEMICONDUCTOR

#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

| 2Cool™                  |
|-------------------------|
| AccuPower™              |
| AX-CAP <sup>®</sup> *   |
| BitSiC™                 |
| Build it Now™           |
| CorePLUS™               |
| CorePOWER™              |
| CROSSVOLT™              |
| CTL™                    |
| Current Transfer Logic™ |
| DEUXPEED®               |
| Dual Cool™              |
| EcoSPARK <sup>®</sup>   |
| EfficentMax™            |
| ESBC™                   |
|                         |

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT®** FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power Resource<sup>SM</sup> Green Bridge™ Green FPS<sup>™</sup> Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX<sup>™</sup> **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MIČROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC<sup>®</sup> OPTOPLANAR<sup>®</sup>** 

**FPS™** 

()<sub>®</sub> PowerTrench<sup>®</sup> PowerXS™ Programmable Active Droop™ QFĒT<sup>®</sup> QS™ Quiet Series™ RapidConfigure<sup>™</sup> Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM<sup>®</sup> STEALTH™ SuperFET<sup>®</sup> SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SYSTEM<sup>®</sup><sup>®</sup> GENERAL TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC<sup>®</sup> TriFault Detect™ TRUECURRENT®\* μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX<sup>™</sup> VisualMax™ VoltagePlus™ XS™

Sync-Lock™

\*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website,

www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### **PRODUCT STATUS DEFINITIONS** Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |